Written by: OptimumG
Investigating Aerodynamic Balance

Investigating Aerodynamic Balance

This case study focuses on utilizing the aero map feature of OptimumDynamics. In this study we demonstrate two different implementations of this feature. We first look at the effect of changing springs on aerodynamic distribution. We then proceed to study the relationship between bump stop gap and vehicle speed.

read more
Creating an Anti-Roll Bar Database

Creating an Anti-Roll Bar Database

OptimumDynamics can be used to predict the behavior of a vehicle for different setup changes. In this study the effects of the vehicle anti-roll bar (ARB) on percent front lateral load transfer distribution (LLTD) is investigated. This study creates a database of possible ARB combinations.

read more
Comparing Tire Data

Comparing Tire Data

Comparing the force and moment characteristics of two sets of tire data is an important task. It is important for tire manufacturers and also for vehicle dynamicists. Differences between the sets of data could include:

read more
Characterising tracks for set-up solutions

Characterising tracks for set-up solutions

OptimumG’s Claude Rouelle explains why, and where, you might want to make use of an asymmetric set-up on your racecar. Having difficulties convincing someone to use more camber on the right-hand side than on the left for a counter-clockwise circuit; running higher tyre pressure on one side than the other; using different damper settings?

read more
The four secrets for chassis happiness

The four secrets for chassis happiness

Claude Rouelle explores the possibilities of qualifying and quantifying a racecar design or set-up through grip, balance, control and stability. In the racing industry, I often find engineers that perform simulations in the same way barmen create cocktails: by (sometimes randomly) mixing ingredients and varying quantities until they eventually find something that matches their taste.

read more
Getting more from  your yaw diagrams

Getting more from your yaw diagrams

Our analysis of yaw versus lateral acceleration continues with Claude Rouelle’s explanation of the yaw moment diagram and how to interpret it. We will start this article
by reviewing some basic concepts. As we have seen in the previous articles on the yaw moment versus lateral acceleration method, an understeering car is defined as a
car that doesn’t have enough yaw moment and an oversteering car is a car with too much yaw moment.

read more
Slide rules: analysing  an oversteering car

Slide rules: analysing an oversteering car

What makes a car quick in steady state and in transient? Claude Rouelle develops his analysis of lateral acceleration and yaw moment variation. In April’s RE (V27N4), we saw that there are 12 causes for the yaw moment: four tyre lateral forces Fy, four tyre longitudinal forces Fx; and four tyre self-alignment moments Mz.

read more
Getting to grips with your yaw moments

Getting to grips with your yaw moments

One important part of a racecar performance engineer’s job is lap time simulation. Simulating and comparing the effect of car design and set-up parameters on the lap
time is essential. With the many inputs and outputs that exist in such simulation, it is always worth having metrics other than the lap time to know if and why we improve the car’s performance.

read more

Software